基于Levy-ABC优化SVM的水电机组故障诊断方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水电机组故障诊断实质上是一种典型的小样本机器学习问题,支持向量机作为一种先进的机器学习方法,在解决小样本问题上有着突出的表现,但其参数设置问题一直未能很好的解决。针对此问题,提出了一种基于人工蜜蜂群优化支持向量机的水电机组故障诊断方法,为改进人工蜜蜂群全局搜索能力,引入Levy飞行策略,对原始人工蜜蜂群算法进行改进。实验表明,Levy飞行蜜蜂群优化和支持向量机相结合的水电机组故障诊断算法,对多类故障能够有效地分类,提 高了水电机组故障诊断的准确率,具有一定的工程应用价值。

    Abstract:

    Fault diagnosis of hydroelectric generating set is essentially a typical machine learning problem with small sample. As an advanced machine learning methods with outstanding performance on solving the small sample size problem,support vector machine has been employed in many fields. Nevertheless,the parameter selection of support vector machine has been remained as a problematic issue. A novel variant of artificial bee colony is proposed by introducing the levy flight strategy to tackle the parameter selection of support vector machine, and the LABC-SVM is employed in the fault diagnosis of hydropower units. The numerical simulation results show that the combination of artificial bee colony with levy flight and support vector machine can be applied to multi-class diagnosis of hydroelectric generating set and efficaciously improved the accuracy of classification, thus it is valuable for engineering.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-06-08
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司