基于多小波包和邻域粗糙集的故障诊断模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决机械设备复合故障难以正确识别的问题,提出一种基于多小波包和邻域粗糙 集的机械故障诊断模型。首先,采用多小波包对原始振动信号进行分解,分别提取原始信号和 各分解频带信号的时域特征组成原始特征;然后,采用邻域粗糙集方法筛选出敏感特征作为多 分类支持向量机的输入,实现机械设备不同状态的自动识别。模型应用结果表明相比于传统 小波包,多小波包分解够提取到更丰富的故障信息和获得较高的识别精度;邻域粗糙集能够从 大量的原始特征中选择出敏感特征,减小分类算法的复杂性,进一步提高分类准确率。该模型 在复合故障的诊断方面具有显著优势。

    Abstract:

    To overcome the difficulties in recognizing the compound faults of mechanical equipment, a novel mechanical fault diagnosis model based on multi wavelet packet, neighborhood rough set and multi-class support vector machine (SVM) is proposed. In the model, the raw signals are decomposed via multi wavelet packet, and the features in time domain are extracted from the raw signals and each decomposed signal to construct the original features. Then, the sensitive features are selected by neighborhood rough set method and input into the multi-class SVM to automatically identify different conditions of mechanical equipment. The model is applied to fault diagnosis of rolling bearings in electric locomotive. The application results demonstrate that multi wavelet packet enables to extract more abundant fault information and obtain higher classification accuracy than traditional wavelet packet; neighborhood rough set enables to select sensitive ones from a large number of original features to rapidly and more correctly diagnosis the mechanical faults. Therefore, this model possesses significant advantage in diagnosis of compound faults.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-06-08
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司