基于小波能谱系数的风力机疲劳裂纹特征
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了风力机叶片裂纹扩展声发射信号的优化小波重分配尺度谱及小波能谱系数相结合的分析法。基于Shannon熵理论计算裂纹扩展声发射信号的重分配尺度谱小波基函数带宽参数,得到最适合裂纹声发射信号的Morlet小波基函数。用优化后的小波基函数计算重分配尺度谱,获得裂纹扩展特征成分在时间尺度平面的高幅值能量分布,利用特征能谱系数表征其重分配尺度谱的特征。实验结果表明,该方法有良好的时频聚集性和抗噪能力,实现了风力机叶片裂纹扩展声发射信号的时频特征提取,得到了能谱系数作为特征向量表示信号特征。该方法可用来实现风力机叶片在复杂环境中的模式识别。

    Abstract:

    Wind turbines are costly and difficult to repair in the field of new energy. Monitoring their health status and mastering the characteristic of blade fatigue crack propagation have been an important topic. A combining method of optimized reassigned scalogram and wavelet energy coefficient is presented to analyze wind acoustic emission (AE) signals of turbine blade crack propagation. Basis function bandwidth of reassigned wavelet scalogram is calculated based on Shannon entropy. The most suitable basis function for AE signals of propagation crack is attained. Therefore, the optimization reassigned wavelet scalogram of crack AE signal has high amplitude energy distribution in time-scale plane. Then, energy spectrum coefficient can be used to the optimization reassigned scalogram. Experimental research proves that the proposed method has excellent time-frequency concentration and noise restraining ability. It is achieved to extract the time-frequency characteristics of the wind turbine blade crack propagation of acoustic emission signals clearly. Energy spectrum coefficient as feature vector can show the characteristics of signals. Moreover, this method can be applied for real-time pattern recognition of blades in complex environments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-03-18
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司