用形态梯度法与非负矩阵分解的齿轮故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3

基金项目:


Feature Extraction for Engine Fault Diagnosis by Utilizing Adaptive Multi-scale Morphological Gradient and Non-negative Matrix Factorization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    振动信号处理与特征参数提取是实现齿轮智能故障诊断的关键。提出采用形态梯度算法对齿轮振动信号进行处理,既可以抑制噪声又可充分突出故障信号的冲击特征,能够在强噪声背景下有效地提取振动信号中反映齿轮工作状态的有用分量;在此基础上提出采用非负矩阵分解的特征提取方法对信号进行压缩,计算用于齿轮故障诊断的特征参量。结果表明,与传统的信号处理与特征参量提取方法相比,笔者提出的方法能够具有更高的分类精度,为准确判断齿轮工作状态提供了一种行之有效的新方法。

    Abstract:

    Signal processing and feature extraction are key steps for gear fault diagnosis. The morphological gradient (MG) algorithm, which can enhance the impulsive components and depress noise in the signal, is employed to extract the useful signal components hiding in the original signal with strong noise. Furthermore, non-negative matrix factorization technology is utilized to calculate the features of the signal processed by MG for gear fault diagnosis. The application results in practical gear fault diagnosis have demonstrated the superiority of the proposed feature extraction scheme over the traditional signal processing and feature extraction methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-05-20
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司