基于蚁群算法的铣削力信号特征选择方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391; TP277

基金项目:


Feature Selection Method on Milling Force Signal Based on Ant Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效地进行刀具状态模式识别,以端面铣刀为研究对象,采用蚁群算法对铣削力信号进行研究分析,提出一种可用于刀具状态识别的特征选择方法。该方法将特征选择过程转化成蚁群算法中蚂蚁寻找最优路径的过程,给出了转移概率公式,并运用Fisher标准判别率作为启发信息,同时将每次搜索得出的最优特征子集输入BP神经网络进行模式识别,得到的正确率整合进信息素更新策略。另外,改进了蚁群算法参数选择方法。实验结果表明,该方法可以高效地进行特征优化选择,进而使模式识别正确率较未经特征选择时得到显著提高。

    Abstract:

    In order to improve cutting tool condition pattern recognition, the face milling cutter is taken as an object and the feature of the milling force signal is analyzed using an ant colony algorithm. A method for feature selection that can be used in pattern recognition of tool wear is proposed. The method transforms the feature selection into a search for the best routes in ant colony algorithm, and the formula for this selection route is given. The fisher criterion is adopted as heuristic information. At the same time, the optimal feature subset of the current iteration cycle is put onto a BP neural network for Pattern Recognition. The precision of classification is obtained and used in the policy of pheromone update. Moreover, the method of parameter selection on the colony algorithm is improved. The experimental results show that this scheme can efficiently obtain the optimal feature subset. The accuracy is significantly higher than that obtained without feature selection.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-05-20
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司