S变换用于滚动轴承故障信号冲击特征提取
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911.7; TH133.3; TH165.3

基金项目:

国家自然科学基金资助项目(51275453,51375433);浙江省自然科学基金资助项目(LY13E050008)


Impact Feature Extraction From Rolling Bearing Fault Signal by S Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为从低信噪比的滚动轴承故障信号中提取出冲击特征,以便于进行轴承故障诊断,引入S变换的信号处理方法。以短时傅里叶变换(short time Fourier transform,简称STFT)以及连续小波变换(continuous wavelet transform,简称CWT)为理论基础,分别推导得出了连续S变换的定义式,并利用快速傅里叶变换(fast Fourier transform,简称FFT)实现S变换离散化计算。S变换克服了STFT时频分辨率固定的缺点,弥补了CWT缺乏相位信息的不足。仿真信号研究表明,S变换在信号整个频带上具有良好的时频分辨率和时频聚集性,能够提取低信噪比信号中的冲击特征,且性能优于STFT和CWT。最后对一组实际的滚动球轴承故障振动信号进行S变换处理,结果表明,S变换能够方便有效地从中提取出周期性的冲击特征,从而指导滚动轴承相关故障的诊断。

    Abstract:

    In order to extract the impact feature from the rolling bearing fault signal in low signal-to noise ratio (SNR), which is important for bearing fault diagnosis, a signal processing method called S transform is introduced. Firstly, the definition formulas of S transform are derived from short time Fourier transform (STFT) and continuous wavelet transform (CWT), then discretized by fast Fourier transform (FFT). S transform successfully overcomes the disadvantage of fixed time-frequency resolution in STFT, as well as the lack of phase information in CWT. The simulation results show that S transform preserves good time-frequency resolution and concentration for all frequencies of the analyzed signal, making S transform effective in extracting the impact feature from the low SNR signal, with better performance than STFT and CWT. Finally, a physical fault vibration signal of the ball bearing is processed by S transform. The results verify the validity and practicability of S transform in the periodic impact feature extraction from the vibration signal, so as to guide related fault diagnosis for rolling bearings.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-11-14
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司