基于Stribeck模型的自激系统分岔混沌特性研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.1; TH117.1

基金项目:

国家自然科学基金资助项目(51275079);新世纪优秀人才支持计划资助项目(NCET 10 0301);中央高校基本科研业务费专项资金资助项目(N110403009)


Stribeck-Based Study on the Bifurcation and Chaos of Self-excited Vibration System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了能够深入研究摩擦自激振动系统的振动-摩擦耦合动力学特性,建立基于Stribeck摩擦模型的质体 弹簧-带摩擦自激振动系统非线性动力学模型,利用数值仿真,研究自激振动系统在不同系统阻尼系数条件下,不同外部激励振幅和激励频率分别对自激振动系统分岔与混沌特性的影响。结果表明,当激励频率不变,无量纲激励振幅在0~1.5区间,系统持续准周期运动的时间随阻尼系数的增加而逐渐增长。振幅在10~11区间阻尼系数相对较小时,系统除倍周期分岔外还存在Hopf分岔;在阻尼系数相对较大时,系统为倍周期分岔。激励振幅不变,激励频率接近于派生系统固有频率时,为单周期同步振动;激励频率向大于派生系统固有频率方向变化时,为准周期运动;激励频率向小于派生系统固有频率方向变化时,为混沌运动。

    Abstract:

    To study the vibration-friction coupling dynamic characteristics of the friction self-excited vibration system, the mass-spring-belt friction self-excited vibration system with nonlinear dynamic model is established. This model is based on the Stribeck friction model. The influences of the damping coefficient, external excitation amplitude and excitation frequency on the bifurcation and chaos characteristics of the system are studied using numerical simulation. Results show that when the excitation frequency is constant and the dimensionless excitation amplitude is between 0 and 1.5, the time period of quasi-periodic motion gradually increases as the damping increases. There is also Hopf bifurcation other than the period doubling bifurcation when the damping is relatively small and the amplitude is between 10 and 11. The system is doubling bifurcation when the damping coefficient is relatively large. It is single-cycle synchronous vibration when the excitation amplitude is constant and the excitation frequency is close to the natural frequency of the derived system. It is quasi-periodic motion when the excitation frequency is greater than the natural frequency of the derived system. On the contrary, it′s chaotic motion.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-11-14
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司