压电复合悬臂梁非线性模型及求解
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH142.2

基金项目:

国家自然科学基金资助项目(51165035,51175395);江西省青年科学基金资助项目(20114BAB216006);江西省青年科学家培养对象计划资助项目(20112BCB23025)


Nonlinear Modeling and Numerical Solution of Piezoelectric Cantilever Beam
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于功能材料的复合悬臂梁涉及多物理场耦合,其本构关系的非线性影响悬臂梁的输出及控制精度,采用Helmholtz Gibbs自由能关系建立压电材料的非线性本构模型。基于Boltzmann原理,该模型的内核函数由热能和Gibbs能量平衡决定。将模型与悬臂梁结构进行耦合,利用边界和初始条件导出压电复合悬臂梁的强解形式,并对强解进行弱化,采用Galerkin法对弱解进行离散化,利用三次B样条函数得到悬臂梁的数值解。研究结果表明,与已有文献的实验进行比较,所建立的压电材料非线性本构模型能够较好地预测复合悬臂梁的行为。

    Abstract:

    Cantilever beam compositing functional material involves multi-physics, and the nonlinearity with its constitutive equations have unstable output performance and low control accuracy. A nonlinear constitutive model for piezoelectric materials is proposed in this paper, adopting Helmholtz and Gibbs energy relations. While establishing this model, the core functions are determined using the equilibrium between thermal and Gibbs energies according to Boltzmann principles. Then the model is coupled with the cantilever structure through the following steps: deriving the strong solutions of the piezoelectric cantilever beam by using the boundary and initial conditions, weakening the strong solutions, and discretizing the weak solutions by using the Galerkin method, in order to acquire the numerical solutions of the cantilever beam combining cubic B-spline function. The results of this paper show that compared with the experimental data in existing references, the nonlinear constitutive model for piezoelectric materials is capable of precisely predicting the behavior of the cantilever beam.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-06
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司