基于TGSVD的桥梁移动荷载识别及正则化矩阵选取
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O327;TU311;TH113

基金项目:

国家自然科学基金资助项目(51278226);河南省教育厅科学技术研究重点资助项目(14B560018);华北水利水电大学青年科技创新人才资助项目(70473)


Selection of Regularization Matrixes for Moving Force Identification Based on Truncated Generalized Singular Value Decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于时域法(time domain method,简称TDM)识别移动荷载理论,通过引入正则化矩阵,提出采用截断广义奇异值分解法(truncated generalized singular value decomposition,简称TGSVD)识别桥梁移动荷载。比较不同正则化矩阵对 TGSVD识别结果影响,并与TDM识别结果进行比较,两轴移动荷载识别结果表明,正则化矩阵选取对TGSVD识别精度、鲁棒性等影响较大。当正则化矩阵选取适当,TGSVD采用弯矩和加速度响应均具有较高识别精度且识别结果受噪声干扰小。在测点类型单一或测点数量较小时优势更为突出,适宜于现场移动荷载识别,具有较强的工程应用价值。

    Abstract:

    Based on the time domain method (TDM) theory, a truncated generalized singular value decomposition(TGSVD) method for moving force identification has been developed by introducing a regularization matrix. The influence of TGSVD identification can be identified by comparing it with different regularization matrixes. Then, when comparing the TGSVD method with the TDM method, the numerical simulation of two-axle moving force loads shows that regularization matrixes have great influence on such properties as identification accuracy, robustness, etc. With appropriate regularization matrixes, the proposed TGSVD method has many good properties compared with TDM, such as better identification accuracy and robust noise with bending moment responses or acceleration responses. TGSVD has prominent advantages with single responses type or less responses number, which is beneficial for the application of TGSVD in the field identification of dynamic axle loads on bridges.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-02
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司