动载荷识别的小波级数分解法阶次确定
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.1;TB123;V214.3;O32;0302;0241.5

基金项目:

国家自然科学基金资助项目(51305197);航空科学基金资助项目(2012ZA52001);高等学校博士学科点专项科研基金资助项目(20123218120005);江苏高校优势学科建设工程资助项目


Order Selection for Wavelet Series Decomposition in Dynamic Load Identification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在基于正交小波级数分解法的分布动载荷识别过程中,由于小波级数阶次的不适当选择,造成载荷识别的不准确或计算量庞大。通过矩阵的谱分解,根据Parseval定理,信号在时域中的总能量和频域中的总能量是相等的,给出了随着阶次的增加而趋于收敛的小波级数系数幅值的包络线,将没有确定解析规律的小波级数系数解析化,得到确定的小波级数阶次与载荷识别相对误差的函数关系。根据实际工程需求的识别误差等级来选取小波级数的阶次,给出了待识别动载荷级数分解时选择阶次的理论依据。计算机仿真分别采用单频、多频、实际载荷信号,试验系统采用冲击载荷加载,验证了该定阶方法的正确性和有效性,结果表明定阶理论适用于不同载荷类型。

    Abstract:

    Based on orthogonal wavelet series decomposition, there is often inaccuracy or huge amounts of calculation when identifying the load due to improper choice of wavelet series order. The envelope line of the wavelet series coefficient amplitude is proposed, which tends to converge with the increasing order through the matrix spectral decomposition and Parseval theorem of which represents that the total energy in the time-domain and frequency-domain is equivalent. The non-analytical wavelet coefficient is analyzed, and the function between the wavelet series order and the relative error of the identified load is obtained. The wavelet series order is thus chosen according to the error level of the engineering requirements. The theoretical basis of the order selection when using the series decomposition in the dynamic load to be identified is proposed. Both the computer simulation in the form of the single-frequency and multi-frequency, real signal as well as the lab test in the form of the impact signal confirm that the proposed approach is feasible and effective. The results show that the proposed approach is applicable to all forms of the loads.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-02
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司