基于动态 PCA 与改进SVM 的航空发动机故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP206.3;TH165.3

基金项目:

辽宁省自然科学基金资助项目(2014024003);航空科学基金资助项目(2010ZD54012);国防技术基础科研项目(Z052012B002)


Aero-Engine Fault Diagnosis Based on Dynamic PCA and Improved SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了对航空发动机进行高效地故障诊断,确保飞机的飞行安全,提出了一种基于动态主元分析和改进支持向量机的航空发动机智能故障诊断方法。该方法结合了动态主元分析(principal component analysis,简称 PCA)在特征提取方面和改进支持向量机(support vector machine,简称SVM)在故障诊断方面的优势。动态 PCA方法对所涉及的过程变量进行去噪、降维、消除相关性等预处理和特征提取,采用改进SVM方法将所得的特征向量进行故障诊断诊断。所提出的方法可解决航空发动机模型精度和传感器测量参数有限情况下的滑油系统故障诊断精度差、效率低和易误诊、漏诊等问题。以某型真实航空发动机滑油系统为例,对提出方法的有效性进行试验验证。结果表明,采用的动态PCA和改进SVM故障诊断方法能有效提高故障诊断正确率,实现航空发动机滑油系统故障诊断的效能,具有较好的应用价值与前景。

    Abstract:

    In order to effectively diagnose aero-engine faults and ensure safety in aircraft flights, a method based on dynamic principal component analysis (PCA) and the improved support vector machine is put forth. It combines the advantages of dynamic PCA in the feature extraction and improves the support vector machine (SVM) in the fault diagnosis. The dynamic PCA method can complete the pre-treatment through de-noising, dimension reduction, and eliminating correlation on the processing variables. The improved SVM method can diagnose faults with the eigenvector. The proposed method can solve such problems as the lubrication system like, low accuracy of the aero-engine model, and limited measurement parameters, all of which are problems that can lead to low efficiency, ease of misdiagnosis, and other issues. A certain type of lubrication system of the aero-engine is taken as an example to verify the effectiveness of the proposed method. The results show that using the dynamic PCA and improved SVM fault diagnosis method can effectively improve accuracy and realize the fault diagnosis performance of the lubrication system of the aero-engine. Furthermore, it has good prospects for future application.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-02
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司