风力机叶片神经网络结构近似分析的数值实验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183;TH136

基金项目:

国家自然科学基金资助项目(50975133);国家“十二五”科技支撑计划资助项目(2013BAF02B11)


Numerical Empirical Study on Structural Approximation Analysis of Neural Network for Blade of Wind Turbine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    介绍了应用于风力机叶片的神经网络结构近似分析方法,开展了风力机叶片性能的样本数据对神经网络结构近似分析的数值实验研究。在风力机叶片的近似分析神经网络模型建立过程中,针对不同的学习率参数进行了数值实验。根据实验结果,风力机叶片性能的样本数目必需能充分反映风力机叶片性能和设计参数之间的关系。如果风力机叶片样本数目较大,叶片神经网络结构近似分析精度将较高;如果学习率参数较大,获得的神经网络模型将较好。该实验研究将有助于在优化设计过程中利用神经网络结构近似分析风力机叶片性能的近似计算。

    Abstract:

    Structural approximation analysis is important for the design optimization of wind turbine blades. First, the method of structural approximation analysis of the neural network for the wind turbine blade is introduced, and the neural network for the blade is briefed. The empirical and relevant practical studies on the structural approximation analysis of the neural network is introduced, and the influence of the patterns of the wind turbine blade′s performance on the analysis is investigated. The numerical experiments of different learning rates to construct the model of the neural network for the structural approximation analysis are made. According to the experimental results, the number of patterns of the blade should be enough to describe the relationship between the performance and the blade′s parameters. It is concluded that the accuracy of the structural approximation analysis of the neural network is higher with a greater number of patterns of the blades. Based on the experiments, the large learning rate is helpful for obtaining a better model of the neural network. The empirical study is helpful for reducing the expensive cost of the design optimization of the wind turbine blade using the structural approximation analysis of the neural network.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-02
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司