模拟电路故障特征降维方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4; TP206.1

基金项目:

国家青年科学基金资助项目(61203168)


Dimensionality Reduction Method of Analog Circuit Fault Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效进行模拟电路故障特征的降维处理,在线性判别分析中通过引入局部化思想提出一种局部线性判别分析降维方法。首先,构造单个数据的局部数据块,计算其类内、类间散度矩阵,通过缩放因子平衡局部邻域类内紧性和类间散性之差建立单个数据的局部优化准则;然后,在整个数据空间中采用对齐算法重构最终目标函数,最后使用标准特征值分解方法求得投影矩阵完成数据降维。算法充分利用数据的局部判别信息使其能够处理数据的非线性并保持数据的类区分度,而且克服了线性判别分析中的小样本问题。算法在标准数据集和模拟电路故障特征提取中进行实验均取得了较好的效果。

    Abstract:

    To help solve the dimension reduction of the ault features in analog circuits, a method called local linear discrimination analysis (LLDA) is proposed by introducing the idea of localization in linear discrimination analysis (LDA). A local data patch of a single group of data is constructed, and the scatter matrices of the intra-class and inter-class are computed. Next, the local optimization criterion is established by balancing the difference between the intra-class compactness and inter-class separation by the scaling factor. Then, the objective function is reconstructed on the alignment algorithm in the whole data space. Finally, the projection matrix is obtained by conducting the standard eigenvalue decomposition for dimension reduction. The algorithm makes full use of the local discrimination information to solve the nonlinearity of the data while maintaining the class differentiation, and avoids the problem of small samples in LDA. Studies on the standard dataset and extraction of fault features in the analog circuits demonstrate the effectiveness of LLDA.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-05-30
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司