基于数据驱动的动车组齿轮箱在线故障预报
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17; U298.1

基金项目:

“十一五”国家科技支撑计划资助项目(2009BAG12A01-E03);四川省科技厅资助项目(2011S20007);高等学校博士学科点专项科研基金资助项目(2012G04005)


Online Fault Prediction of the Gearbox of EMU Based on Data Driven Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    动车组齿轮箱结构复杂,且在实际运行中可能受到很多外界因素的激扰,难以建立合适的动力学模型。介绍了一种检测高速动车组齿轮箱故障的时间序列算法,该方法基于数据驱动,不需要建立动力学模型,适合在线故障预报。无线微机电传感器从齿轮箱测得加速度信号并建立时间序列模型,利用模型的自回归参数定义故障敏感参数(fault sensitive parameters,简称FSP)。在有故障和无故障两种状态下,FSP均值完全不同。通过比较FSP均值,然后用假设检验中的t检验判定是否存在故障。实践证明,所提出的方法能较好地在线识别高速动车组齿轮箱早期故障,具有重要的应用意义。

    Abstract:

    The gear box is a key component of the electric multiple unit(EMU), as its performance directly influences the reliability and security of the EMU. Since the gear box has a complex structure and may be excited by many factors in actual operation, it is difficult to establish a proper dynamic model. This paper introduces a time-series algorithm for detecting the gear box fault that is data-driven, which saves the trouble of establishing a dynamic model and is suitable for online fault prediction. By measuring the acceleration signal from the gear box using the wireless micro electro-mechanism sensor(MEMS), the time-series model and the fault sensitive parameters (FSP) are defined by the model′s regression parameters. The averages of the FSP are significantly different between fault and fault free tests. The fault can be detected by comparing the averages of FSP and t test of the hypothesis testing. This practice has proved that the method introduced in this paper can identify the early fault of the EMU′s gear box online, and its application can be of great value.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-05-30
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司