多PCA模型及SVM-DS融合决策的服务机器人故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP206.3; TP242.6; TH17

基金项目:

国家自然科学基金资助项目(61375084);山东大学基本科研业务费资助项目(2014JC034)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轮式服务机器人驱动系统故障诊断问题,提出一种基于多主成分分析(principalcomponent analysis,简称PCA)模型及支持向量机和DS证据理论(support vector machine and dempster shafer,简称SVM-DS)融合决策的故障诊断方法,分别利用正常状态和故障状态下的传感器数据建立多个PCA模型。利用正常状态下的PCA模型实现故障的检测。传感器数据经多PCA模型特征提取后作为SVM的输入向量,实现故障的初步分离。基于混淆矩阵定义SVM的全局及局部可信度,并依据可信度值和故障初步分离结果完成基本概率分配函数的赋值,以实现SVM和DS证据理论在故障分离中的有效结合。实验结果表明,本研究方法能灵敏检测到机器人驱动系统故障的发生,故障分离平均正确率达92.6%,与传统单PCA模型的方法相比有更高的正确率和稳定性。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-07-07
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司