极端环境下的惯性测量传感器件与系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP212; TH113

基金项目:

国家自然科学基金杰出青年基金资助项目(51225504);国家基础研究发展计划(“九七三”计划)资助项目(2012CB723404);国家自然科学基金资助项目(61127008)


Piezoelectric-Acoustic-Thermal Calculation Model of Low-Frequency Sonophoresis Transdermal Drug Delivery System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向惯性传感与测量系统在超高过载、超高转速等极端应用环境下,介绍了几种典型的瞬态高量程与大动态范围条件下的惯性传感与测量系统技术。重点分析和讨论了极端环境下的超量程与大动态测试所需的特种传感方法与微纳集成制造技术,结合特殊的封装防护与系统集成方法,实现外部恶劣环境影响因子的衰减,以及新型的高过载、高旋运动载体惯性参数的传感与测量。

    Abstract:

    In order to analyze the thermal problem from ultrasonic cavitations in the low-frequency sonophoresis process for transdermal drug delivery, this paper establishes a stimulation model for piezoelectric-sound-thermal coupling fields in sonophoresis based on COMSOL Multiphysics software, which utilizes piezoelectric, heat transfer and acoustic balance equations. Further, the temperature field distribution and maximum surface temperature curve changing with time are acquired from both the finite element method (FEM) and thermal imaging system with input electrical power of 5.5 W and driving frequency of 21 kHz. The simulation and calculation results show that the temperature field distribution and maximum surface temperature curve of the FEM calculations are consistent with those of the experimental results in both the alone-heating ultrasonic transducer and low-frequency sonophoresis system with a Franz diffusion cell in the air. In the low-frequency sonophoresis process, sharp sound attenuation caused by ultrasonic cavitations in the liquid contributes to fast heating, due to the transformation of acoustic energy into thermal energy. In the thermal imaging experiments, the highest surface temperature in the sonophoresis system reached 40℃ in 15 min. According to the simulation results, the maximum temperature of the whole system reached 41.3℃, which meets the temperature safety requirements of 42℃ or lower for low-frequency sonophoresis transdermal drug delivery. Calculated and experimental results demonstrate that by predicting the temperature distribution, the piezoelectric-acoustic-thermal coupling calculation model is beneficial for the design of ultrasonic radiation time control, the determination of structure size, and the optimization of the material parameters of the ultrasonic transducer, and thereby lays a theoretical basis for the multiple applications of different sonophoresis conditions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-01-07
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司