低频超声透皮给药系统压电-声-热计算模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.1; TJ02; Q819

基金项目:

国家自然科学基金青年基金资助项目(51405224);江苏省科技计划青年基金资助项目(BK20140818);中央高校基本科研业务费专项资金资助项目(NJ20140027);江苏省大学生创新创业训练计划资助项目(201510287010Y)


Piezoelectric-Acoustic-Thermal Calculation Model of Low-Frequency Sonophoresis Transdermal Drug Delivery System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为分析低频超声透皮给药过程中由超声空化引起的发热问题,基于压电方程、热平衡方程和声压平衡方程,利用COMSOL有限元软件建立了低频超声透皮给药过程中压电-声-热耦合仿真计算模型。通过理论分析和FLIR热成像仪的温度测量实验,获得了系统在超声输入功率为5.5 W、频率为21 kHz下的温度场分布与外表面最大温度变化曲线。超声换能器与低频超声透皮给药系统(空气中)的温度场分布及其最大温度值的仿真分析结果都与实验值一致,即在低频超声透皮给药过程中,药液中超声空化会造成声波大幅衰减,从而把部分声能直接转化为热能,导致药液温度快速上升,15 min时外表面最高温度可达40℃,内部辐射头下方最大温度的理论值可达41.3℃,达到了低频超声透皮给药的温度安全要求(≤42℃)。计算与实验结果表明,所建立的压电-声-热耦合计算模型可以预测系统温度变化,可用于超声作用时间、换能器结构尺寸和材料参数的优化设计。

    Abstract:

    In order to analyze the thermal problem from ultrasonic cavitations in the low-frequency sonophoresis process for transdermal drug delivery, this paper establishes a stimulation model for piezoelectric-sound-thermal coupling fields in sonophoresis based on COMSOL Multiphysics software, which utilizes piezoelectric, heat transfer and acoustic balance equations. Further, the temperature field distribution and maximum surface temperature curve changing with time are acquired from both the finite element method (FEM) and thermal imaging system with input electrical power of 5.5 W and driving frequency of 21 kHz. The simulation and calculation results show that the temperature field distribution and maximum surface temperature curve of the FEM calculations are consistent with those of the experimental results in both the alone-heating ultrasonic transducer and low-frequency sonophoresis system with a Franz diffusion cell in the air. In the low-frequency sonophoresis process, sharp sound attenuation caused by ultrasonic cavitations in the liquid contributes to fast heating, due to the transformation of acoustic energy into thermal energy. In the thermal imaging experiments, the highest surface temperature in the sonophoresis system reached 40℃ in 15 min. According to the simulation results, the maximum temperature of the whole system reached 41.3℃, which meets the temperature safety requirements of 42℃ or lower for low-frequency sonophoresis transdermal drug delivery. Calculated and experimental results demonstrate that by predicting the temperature distribution, the piezoelectric-acoustic-thermal coupling calculation model is beneficial for the design of ultrasonic radiation time control, the determination of structure size, and the optimization of the material parameters of the ultrasonic transducer, and thereby lays a theoretical basis for the multiple applications of different sonophoresis conditions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-01-07
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司