Abstract:For the problem of vibration in the floor of a a light bus, the modal of its frame and interior body floor are measured, and the on-road vibration of the floor is tested. By performing order tracking and spectral analysis, it is found that the first order vibration of the transmission shaft is the main excitation source. Meanwhile, the 8th local mode of the floor is close to the first order frequency of the driveline in the modal analysis process, which would cause local resonance, and is the main factor of the violent vibration of the floor. Then we set out to make improvements in the vibration transmission path and modal distribution optimization. The nonlinear stiffness of the driveline rubber bearing is optimized by using virtual prototype technology to maximally reduce the transfer of vibration. For the resonance of the local floor, the finite element method is used to optimize the modal distribution of the floor, and the local modal avoids the working frequency range of the engine and the driveline. Finally, the effectiveness of the improvement measures is verified and the bus floor vibration is effectively controlled.