基于子小波布置和系数融合的轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3; TN911.4

基金项目:

(国家自然科学基金资助项目(51105236);山东省自然科学基金资助项目(ZR2012EEL06)


Fault Diagnosis of Bearings Based on Baby Wavelet Deployment and Coefficients Integration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承早期微弱故障特征难以提取的问题,提出一种基于子小波布置策略和小波系数融合的故障诊断方法。首先,布置子小波并进行小波变换;然后,根据峰度指标对多尺度小波系数进行融合集成;最后,运用自相关谱抑制噪声,突出故障信息。通过仿真信号和实际信号对该方法进行了验证,结果表明,该方法能够提取出微弱的故障特征,实现滚动轴承的早期故障诊断。

    Abstract:

    In light of the difficulties of feature extraction of early faults in rolling element bearings, a method based on baby wavelet deployment and coefficients integration is proposed for fault diagnosis. First, the baby wavelets are deployed, and wavelet transform is conducted. The wavelet coefficients at different scales are then integrated according to the proposed peakedness indicator. Finally, the autocorrelation spectrum is adopted to restrain noise and highlight fault information. The effectiveness and advantages of the proposed method are proven through simulated and experimental signals. The results show that the weak fault features can be extracted, and the early fault diagnosis of rolling bearings is realized through the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-03-07
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司