非线性振动系统非共振振动自同步特性
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.1

基金项目:

国家自然科学基金资助项目(51375080);中央高校基本科研业务费专项资金资助项目(N130803301);辽宁省科技创新重大专项计划(201506003);辽宁重大装备制造协同创新中心资助项目


Vibration Self-Synchronization Features of a Nonlinear Vibrating System Under Non-resonant Conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从理论计算、数值仿真和实验验证三个方面研究一类平面单质体非线性振动系统在非共振工作时的振动同步特性。首先,以反向回转双电机驱动的振动系统为研究对象,考虑其弹性元件的非线性因素,采用拉格朗日法建立其动力学模型;其次,基于Hamilton原理求出系统实现自同步的条件,利用一次近似判别法求出系统稳定同步运行的条件;然后,基于Matlab/Simulink软件,采用4阶龙格库塔法进行数值仿真,对理论推导的自同步条件及稳定性条件进行计算;最后,对一单质体振动样机进行实验测试。仿真结果表明,该非线性振动系统可以实现稳定的0相位自同步运动。通过理论计算结果、仿真结果以及实验结果的相互对比,验证该非线性振动系统同步特性理论的准确性。

    Abstract:

    This paper studies the vibration self-synchronization features of a type of planar single-mass nonlinear vibration system under the non-resonant condition. First, a vibrating system driven by two counter-rotating motors was taken as a research object. The nonlinear factor of the elastic component was considered. The dynamical model of the system was established using Lagrange′s equation. The condition of the self-synchronization implementation of the system was obtained based on the Hamilton theory. The condition of steadily synchronous operation was obtained using the first order approximate theory stability criterion. Then, the computer simulation was performed using MATLAB/Simulink and applied the fourth order Rung-Kutta method. The theoretical calculation of the self-synchronization condition and the stability condition was obtained based on the simulation. Finally, the experiment of a single-mass vibration prototype was carried out. The simulation results show that the vibration system can achieve steady 0-phase synchronous motion. Comparison among the theoretical calculations, simulation results and experimental results prove the accuracy of the self-synchronization feature of the nonlinear vibration system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-05-05
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司