快速自适应经验模态分解方法及轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH 133.33; TH165.3; TN911

基金项目:

科技部863计划资助项目(2012AA040106);国家自然科学基金资助项目(11372179);教育部新世纪优秀人才资助项目(NCET-13-0363);上海市科委创新项目(15JC1402600)


Rolling Bearing Fault Diagnosis Based on Fast Adaptive Empirical Mode Decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种快速自适应经验模态分解(fast and adaptive empirical mode decomposition ,简称FAEMD),其算法结构和本征模态函数的特点与经验模态分解(empirical mode decomposition, 简称EMD)类似。采用顺序统计滤波器代替三次样条来拟合曲线,简易的终止准则使耗机时间大幅减小。该方法可以快速、有效、准确地分解信号,能够避免终止准则和端点效应问题,改善模态混叠和耗时问题。在滚动轴承故障诊断的应用中,效果表现良好。

    Abstract:

    Empirical mode decomposition(EMD) was currently the most effective treatment method in the areas of nonlinear and no-stationary signals, and has been applied in fault diagnosis. After over ten years of development, four issues still need to be resolved: termination criteria, margin effects, mode mixing, duration. This study proposes a novel method called fast and adaptive empirical mode decomposition(FAEMD). In this method, the algorithm structure and characteristics of the intrinsic mode function(IMF) were similar to the EMD method. Cubic spline was replaced by order statistics filter to fit the curve, and simple termination criteria significantly reduced consumption of machine time. Using this method, the signal can be decomposed quickly, accurately and effectively, and the abovementioned problems can be avoided. Fault diagnosis for rolling element bearings were applied to verify the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-09-05
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司