考虑大幅值输入的随机子空间识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU311

基金项目:

国家自然科学基金资助项目(51608408);中央高校基本科研业务专项资金资助项目(WUT-2014-IV-047)


Stochastic Subspace Identification Considering Large Amplitude Inputs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随机子空间识别是一种可靠的时域模态参数识别算法,通常是利用结构在零初始状态作用下的动力响应来识别结构模态参数,而并没有考虑大幅值输入对识别结果的影响。针对此问题,研究了大幅值输入对随机子空间识别的影响并探讨了方法的适用性。首先,介绍了考虑大幅值输入的随机子空间识别理论基础;然后,通过一个两自由度系统进一步考虑了不同阶次模态、模态振型的相对精度随采样数和大幅值输入的变化情况;最后,以菜园坝长桥大桥拱肋脉动试验为算例,研究了考虑大幅值输入识别方法的适用性。结果表明:考虑大幅值输入能够提高识别的模态参数精度;相比频率,模态振型精度随采样数的变化具有一定的随机性;考虑大幅值的随机子空间识别对模态试验的完备性要求较高。

    Abstract:

    Stochastic subspace identification (SSI) is a robust time domain modal identification algorithm. Generally, SSI identifies modal parameters from dynamic responses of structures under zero initial condition, while the effects of large amplitude inputs on the results are neglected. Based on existing studies, this paper presents the effects of large amplitude inputs on SSI and investigates the applicability of this method. First, the theoretical foundation of SSI considering large amplitude inputs is briefly introduced. Then, through a two degrees of freedom system, the relative accuracy of different modes and mode shapes changes with data of samples, and the large amplitude inputs are studied. Finally, a case study of the fluctuation test of the arch rib of the Yangtze River Caiyuanba Bridge is presented to investigate the applicability of the method in identifying large amplitude inputs. The study shows that considering large amplitude inputs can improve the relative accuracy of modal parameters. Compared to natural frequency, the accuracy of mode shape change with data samples shows more randomness. SSI of large amplitude inputs has a high standard for the completeness of modal experiment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-01-11
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司