基于CEEMD-WPT的滚动轴承特征提取算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911; TH165

基金项目:

(国家自然科学基金资助项目(51405241,51505234,51575283)


Feature Extraction of Rolling Bearing Based on CEEMD-WPT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现对滚动轴承振动信号中特征频率成分的精确提取,提出了将互补总体平均经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)与小波包变换(wavelet package transform,简称WPT)相结合即CEMMD-WPT特征信号提取算法。两种方法的结合既有效解决了CEEMD分解后依然存在的模态混叠问题,又消除了进行WPT处理后产生虚假频率分量、频率混淆现象的影响。通过仿真试验验证了该方法的有效性,并应用于实际,取得很好的结果。

    Abstract:

    Rolling bearings are one of the most widely used and most easily damaged components in mechanical equipment. Extracting the vibration signal of the rolling bearing can give us a better grasp of the equipment’s operational state. In practical applications, traditional wavelet package transform (WPT) due to a defect itself MALLAT algorithm cannot accurately extract the characteristic frequency of the signal. Complementary ensemble empirical mode decomposition (CEEMD) can effectively restrain the mode mixing problem, but cannot completely avoid it. In order to accurately diagnose rolling bearing defects, we propose the WPT-CEMMD feature extraction method, based on CEEMD and WPT. Combining the the two methods could not only effectively solve the problem of mode mixing after CEEMD decomposition, but also eliminate the influence of the spurious frequency component and frequency aliasing after WPT treatment. Both simulations and a case of the working frequency of extraction demonstrated the efficacy of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-05
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司