SDICA方法在单通道信号故障分类中的研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN912;TH133

基金项目:

(国家自然科学基金资助项目(51175057);辽宁省教育厅一般项目基金资助项目(L2013477)


Study of Fault Classification for Single Channel Signal Based on SDICA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种针对工程单通道信号的子带分解独立分量分析(subband decomposition independent component analysis,简称SDICA)故障分类方法。利用经验模态分解方法(empirical mode decomposition,简称EMD)得到的多个基本模式分量作为子带信号,对子带信号进行独立分量分析(independent component analysis,简称ICA),在ICA方法过程中提取了分离过程特征中产生的残余互信息值,在估计子带信号中计算各自的近似熵值,并把残余互信息和近似熵值作为特征参数,输入广义回归神经网络实现故信号3种故障高精度的识别,验证了具有良好表征故障能力的残余互信息值和估计子带近似熵能够成为故障分类的重要参数。

    Abstract:

    A fault classification method based on Sub band decomposition independent component analysis (SDICA) is presented for an engineering single sensor signal. The intrinsic mode functions obtained by the empirical mode decomposition(EMD) method are used as sub band signal, and are processed by independent component analysis (ICA) theory, the residual mutual information is extracted in the process of ICA separation, the approximate entropy is abstracted in the estimated sub band signal acquired by the SDICA, the characteristic parameters composed by residual mutual information and approximate entropy are used as input of the generalized regression neural network (GRNN) to realize the fault classification. The SDICA import the ICA theory in the single sensor signal actual fault classification, and the engineering single channel bearing signal achieve completely correct classification of three fault type, this method proves the residual mutual information and estimated subband approximate entropy can be importent classification character.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-05-13
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司