基于互相关函数幅值和SVM的输电塔损伤识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU391

基金项目:

国家基础研究发展计划(“九七三”)计划资助项目(2015CB057704);国家自然科学基金创新群体资助项目(51421064);大连市建设科技计划资助项目


Damage Identification of Transmission Tower Based on Cross Correlation Functions Amplitude and Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前输电塔结构损伤识别中需要布设大量传感器的问题,提出了基于互相关函数幅值和支持向量机(support vector machine,简称SVM)的损伤识别方法。首先,定义初始与当前状态结构模态响应近似信号的互相关函数幅值差为损伤特征;其次,将损伤特征作为输入样本来训练支持向量机分类器,将损伤识别问题转化为模式分类问题;最后,利用2层角钢塔模型的振动试验,验证了方法的可行性。该方法仅需要少量传感器测得结构的动力响应,且适用于环境荷载激励,对输电塔结构损伤有较好的识别效果和噪声鲁棒性。

    Abstract:

    A damage detection method for transmission tower is presented based on integrating the cross correlation function amplitude and the support vector machine (SVM). The proposed method consists of two stages. Firstly, the data features, which are defined as the difference of the cross correlative function amplitude between initial and current states, is calculated from the approximate signal of single mode responses. The data features are then used to train the SVM classifier to turn the damage identification problem into classification problem. The feasibility of the method is verified by the vibration test of the transmission tower model. The results show that the proposed method only uses the dynamic responses from small number of sensors, and can identify the damage status with strong noise robustness during arbitrary excitations.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-05
  • 出版日期: 2017-06-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司