摘要:针对齿轮箱在强噪声背景下齿轮微弱故障振动信号的特征不易被提取的问题,提出将改进小波去噪和Teager能量算子相结合的微弱故障特征提取方法。采用改进小波阈值函数对振动信号进行去噪处理,与形态学滤波和传统小波阈值函数相比能够有效地提高信号的信噪比。对去噪后的信号进行集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)得到若干本征模式函数(intrinsic mode function,简称IMF),计算各IMF分量与原信号的相关系数并结合各IMF分量的频谱剔除虚假分量。对有效的IMF分量计算其Teager能量算子,并重构得到Teager能量谱,对重构信号进行时频分析并将其结果与原信号的希尔伯特黄变换(HilbertHuang transform,简称HHT)得到的边际谱进行对比。实验研究结果表明,本研究方法相比HHT能够对齿轮微弱故障特征进行更为有效地提取,验证了本研究方法在齿轮箱微弱故障诊断中的可行性。