Abstract:In order to sense external flow field such as the change of wind speed, an integrated system of wind identification components based on piezoelectric bimorphs array is proposed to obtain the flight parameters such as speed and attitude angle. A physical aircraft head model with 4 pieces of wind bimorphs’ sensors is designed as symmetric structure, and the model has little effect on the aerodynamic characteristics. First of all, in the wind tunnel test, the inductive signals of single bimorph are measured by a charge amplifier, NI data acquisition card and Labview virtual instrument analysis software. The least squares algorithm is used to obtain the functional relationship between the inductive voltage (root mean square) of each piezoelectric bimorph and wind speed (vector). Then, the sensing function model of the two variables (the wind velocity and the angle) of wind speed identification system is established to calculate the wind velocity and the angle. The experimental results demonstrate that the design of the wind speed identification of piezoelectric integrated components can realize a twdimensional measurement of wind speed in the wind tunnel. When the sampling time is 5 s, the sensing accuracies of velocity and angle are smaller than 3% and 3° respectively. Further, the highest resolution can reach 0.5% (velocity) and 0.55°(angle). The integrated components of wind speed identification used in aircraft can quickly sense the wind velocity and direction, the accuracy of sensing function model can meet the requirements of the wind speed identification of external environment. All these lay a theoretical and experimental foundation for the future integration and miniaturization design of aircraft sensor system.