基于PH乘子算法优化的Lamb波成像研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP274+53;TH878

基金项目:

(浙江省基础公益研究计划资助项目(LGG18E050003);国家自然科学基金资助项目(61603211)


Lamb Waves Defects Imaging Research Based on PH Multiplier Algorithm Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对铝薄板的Lamb波缺陷检测,提出了一种基络幅值的导波缺陷成像及其优化方法。将稀疏压电陶瓷传感器(piezoelectric ceramic transducer,简称PZT)阵列作为收发装置产生激励信号和采集导波信号,利用健康信号与缺陷信号的差信号,提取出含有缺陷位置信息的包络曲线。引入了包含有位置权重矢量的因子以突出缺陷像素点的特征,借助适当的罚函数,从而将提高导波成像质量问题转换为求解一系列无约束优化求解问题。应用鲍威尔赫斯廷斯(Powell-Hestenes,简称PH)乘子算法确定了增广目标函数,实现了权重矢量优化,提高了成像质量。实验结果对比表明,该成像算法对铝板中缺陷的定位误差小,成像直观清晰并且缺陷识别明确,实现了导波成像的优化处理。

    Abstract:

    The detection technology of ultrasonic guided waves has a wide application prospect in structural health monitoring. In this paper, a kind of Lamb waves defect imaging method and its optimization based on envelope amplitude are proposed for detecting aluminum sheet. The sparse PZT array is used as a transmitting and receiving device to generate the excitation signal and acquire the Lamb waves for difference between the health signal and the defect signal, which contains defect position information. An appropriate penalty function is determined introducing the factors containing the position weight vector to highlight the characteristics of the defective pixel. It transforms the improved waveguide image quality problem into a series of solving unconstrained optimization problems,and the augmented objective function can be determined by means of PH multiplier algorithm, which makes the weight vector optimized and improves the image quality. Experimental results show that the positioning error about the algorithm is small, defect imaging of sheet is clear and can be intuitively recognized, and the optimal treatment of guided waves imaging is perfect.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-04
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司