车用直驱轮毂电机传感器故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3; U469.72

基金项目:

(国家自然科学基金重点资助项目(U1664258);江苏省重点研发计划竞争资助项目(BE2017129);江苏省“333工程”资助项目(BRA2016445);江苏省“六大人才高峰”资助项目(2014-JXQC-004)


Direct Drive Motor Sensor Fault Diagnosis Based on Optimal Unknown Input Observer for Electric Vehicle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对分布式驱动电动汽车直驱轮毂电机系统电流、转速传感器故障问题,研究传感器鲁棒故障检测与定位方法。考虑电机模型中含有未知输入和噪声,通过系统降阶的方式对未知输入进行解耦,采用卡尔曼滤波器(Kalman filter, 简称KF)滤除解耦后子系统的白噪声,并设计最优未知输入观测器(unknown input observer, 简称UIO)实现系统状态估计,得到了一种较强鲁棒性的残差产生器。采用极大似然比(generalized likelihood ratio, 简称GLR)的方法评估残差信号并确定阈值,提出了一种传感器故障定位方法。台架实验结果表明,提出的基于最优UIO的传感器故障诊断方法能够实现电动汽车直驱电机系统传感器故障辨识与定位。

    Abstract:

    Using direct driven in-wheel motor as the driving system of distributed driven electric vehicle,the power distribution of each driving wheel can be realized quickly and accurately. Aiming at the matter of current sensor fault and rotational speed sensor fault in distributed driven electric vehicle, the robust fault detection and location method is studied. Considering the unknown input and noise in motor model, decoupling the unknown input via the method of system order reduction, using Kalman filter (KF) to filter the white noise of the decoupled subsystem, the optimal unknown input observer (UIO) is designed to realize the system state estimation, and a robust residual generator is obtained. At the same time, the generalized likelihood ratio (GLR) method is used to evaluate the residual signals and determine the threshold value, a sensor fault location method is proposed. Bench experiment results show that the sensor fault diagnosis method based on optimal UIO realizes the sensor fault diagnosis and location of the direct driven in-wheel motor system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-04
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司