基于二值双谱和模糊聚类的风电轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911.7; TH165.3

基金项目:

(新疆大学博士科研启动基金资助项目(BS160245);国家自然科学基金资助项目(51367015, 51667020)


Bearing Fault Pattern Recognition of Wind Turbine Based on Two-Value Bispectrum Feature-Fuzzy Clustering Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风电机组滚动轴承振动信号具有强噪声、非高斯、非线性及非平稳的特性,导致滚动轴承故障状态及故障位置难以确定的问题,提出了基于二值双谱和模糊聚类的风力发电机组滚动轴承故障诊断方法。首先,对振动信号进行双谱分析,获得其二值双谱特征;其次,以基于目标函数的模糊聚类方法,构造各类故障的目标模板;最后,按照最邻近准则设计分类器,以目标模板与测试样本之间的距离测度作为模式分类依据,对风电机组滚动轴承的故障位置进行判断。实验结果表明,该方法能有效诊断故障状态及故障位置,其诊断准确性高、稳定性好、计算量小、速度快,且以距离测度为故障判决依据,使诊断结果易于理解和解释、便于检验。

    Abstract:

    It is difficult to identify the fault state and location of the roller bearings of a wind turbine due to the complexity of its vibration signals. They suffer strong interference and are non-Gaussian, nonlinear and non-stationary. In the light of these characteristics, a fault diagnosis method is put forward based on the binary-bispectrum and fuzzy clustering. First, the binary-bispectrum features are obtained. Then, the target templates for different faults are constructed based on fuzzy clustering method. Finally, the proximity classifier is designed to determine the roller bearing fault position according to the distance between the test samples and corresponding target templates. The experimental results show that this method can effectively diagnose the fault state and fault location with high accuracy, good stability, less calculation and fast speed. Furthermore, the results is easy to understand and verify when the relative distance is taken as the basis to diagnose the faults.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-09-04
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司