基于主成分分析的特征频率提取算法及应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.1; TH165.3; TN911.7

基金项目:

(国家高技术研究发展计划(“八六三”计划)资助项目(2015AA043005);国家自然科学基金资助项目(51375178)


Feature Frequency Extraction Algorithm Based on Principal Component Analysis and Its Application
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过研究主成分分析(principal component analysis,简称PCA)中有效特征值与信号频率和幅值之间的关系,发现有效特征值的数量是由原始信号中频率成分的个数决定,与幅值、频率和相位的大小无关。信号中每个频率产生两个有效的特征值,且幅值决定协方差矩阵C的特征值在其分布图中的排列顺序。提出了一种基于PCA的特征频率提取算法,该算法可实现对单个或多个特征频率的准确提取。将此方法应用于大型转子系统轴心轨迹的提纯上,效果优于谐波小波和小波包算法。

    Abstract:

    The relationship among the effective eigenvalue, the frequency and its amplitude in principal component analysis(PCA) is studied. It is found that the number of valid eigenvalues, which are irrelevant size of the amplitude, phase and frequency of the signal, are determined by the number of signal frequency components. The sequence of the eigenvalues in the covariance matrix C characteristic distribution chart depend on the amplitude of the signal frequency. Each characteristic frequency in the signal produces two valid eigenvalues. A new characteristic frequency separation method is proposed, based on the above-mentioned discoveries of PCA theory. This method can be well applied to filter the single frequency and extract the characteristic frequency, which is used in the application to purify the axis orbit of the large rotor vibration test bed. The simulation and experimental results manifest that the proposed algorithm has advantages in feature frequency extraction.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-09-04
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司