基于改进多尺度模糊熵的滚动轴承故障诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911.7; TH165.3

基金项目:

国家自然科学基金资助项目(51505002);国家重点研发计划资助项目(2017YFC0805103);安徽省高校自然科学研究重点资助项目(KJ2015A080)和安徽工业大学研究生创新研究基金资助项目(2016061)


A Rolling Bearing Fault Diagnosis Approach Based on Improved Multiscale Fuzzy Entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滚动轴承故障诊断的关键是敏感故障特征的提取。多尺度模糊熵(multi-scale fuzzy entropy,简称MFE)是一种衡量时间序列复杂性的有效分析方法,已经被用于滚动轴承振动信号故障特征提取。针对MFE算法中多尺度粗粒化过程存在的缺陷,笔者采用滑动均值的方式代替粗粒化过程,提出了改进的多尺度模糊熵算法,并通过仿真信号将其与MFE进行了对比分析。在此基础上,提出了一种基于改进多尺度模糊熵与支持向量机的滚动轴承故障诊断方法。最后,将所提故障诊断方法应用于的滚动轴承实验数据分析,并与基于MFE的故障诊断方法进行了对比,结果验证了所提方法的有效性和优越性。

    Abstract:

    The key of rolling bearing fault diagnosis is the extraction of sensitive fault features. Multiscale fuzzy entropy (MFE) is an effective analysis method for complexity measurement of time series and has been used for fault features extraction from rolling bearing vibration signals. Considering the defects existed in the MFE coarse graining , its process is replaced by sliding average and then an improved MFE algorithm is proposed in this paper. It is also compared with MFE by using simulation signal analysis. In this case, a new fault diagnosis method for rolling bearing is proposed based on the improved multiscale fuzzy entropy and support vector machine. Finally, the proposed fault diagnosis method is applied to data analysis of rolling bearing experiment by comparing with the traditional MFE method, and the analysis results verify the effectiveness and superiority of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-02
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司