基于LMD-MS的滚动轴承微弱故障提取方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17; TP17; TP206

基金项目:

(山西省自然科学基金资助项目(20150110063)


Fault Signal Extraction Method of Rolling Bearing Weak Fault Based on LMD-MS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    轴承的早期故障信号属于微弱信号,其故障特征提取一直是旋转机械故障诊断的一大难点。笔者将掩膜法引入到局部均值分解(local mean decomposition,简称LMD)分解中,提出了一种基于LMD和掩膜法(mask signal,简称MS)的滚动轴承微弱故障提取方法。由于LMD在噪声背景下分解出的功能分量(product function,简称PF)存在模态混叠现象,很难辨别故障频率的真伪,所以引入了掩膜信号法对LMD分解出的与原信号相关性强的PF分量进行处理,抑制模态混叠现象,提取故障频率。文中以滚动轴承实际故障信号为对象进行分析,通过将掩膜信号法与LMD方法相结合的方式,对存在噪声的故障信号进行处理,将故障频率处的峭度值提高了8倍,同时将信噪比提高了19.1%,成功提取了故障信号,为故障特征提取提供一种新的诊断方法。

    Abstract:

    In the practical case, the early fault signals of bearings are weak which is difficult to extract from strong noise. So, when a mask method is introduced into local mean decomposition (LMD), a method for extracting weak fault of rolling bearings based on mask signal method and LMD has been proposed in this paper. Because there is a mode mixing phenomenon when LMD decomposes the product function (PF) components in the noise background, it is difficult to distinguish which fault frequency is true or false. Furthermore, the mask signal method introduced to the decomposed PF components, alleviates the mode mixing phenomenon, and it can extract the real fault frequency. According to the analysis of the actual fault signals of rolling bearings, the kurtosis value has increased 8 times at the fault frequency using the mask signal method and LMD to process the fault signals with noise, and the signal’s noise ratio has increased 19.1%. At the same time, the fault signals have been extracted.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-02
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司