基于耦合隐马尔可夫的轴承故障诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH39;V216.3

基金项目:

国防基础科研计划资助项目(JCKY2016205A004);航空科学基金资助项目(20173333001)


Fault Diagnosis Method of Aviation Bear Based on CHMM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轴承故障信号比较微弱的特点,提出了一种基于耦合隐马尔可夫模型(coupled hidden Markov model,简称CHMM)的轴承故障诊断方法。首先,根据轴承传动结构特点,设计能够监测轴承振动状态的传感器网络;其次,通过非线性特征提取方法获取能够反映轴承健康状态的少数关键特征,利用传感信号的矢量量化代替提取其频域微弱特征的方法,可有效提高故障诊断效率和准确率;然后,在多通道信息融合中引入隐马尔可夫模型,采用左右型齐次隐马尔可夫链实现故障诊断;最后,通过对各种轴承故障状态构建其对应的耦合隐马尔可夫模型的方式,实现对轴承故障类型的辨识。试验结果表明,该方法能够有效地实现对轴承故障类型的识别。

    Abstract:

    Aiming at realizing the effective fault diagnosis for aviation bearing, a method based on a coupled hidden semi-Markov model (CHMM) is proposed. Firstly, a monitoring network is designed for observing the radial and axial vibration data of bearings according to the aviation dynamic components of transmission structure. Secondly, a nonlinear feature extraction method is applied for obtaining a few key features, and it provides a prerequisite for improving the efficiency and accuracy of fault diagnosis. Finally, the left and right types of the homogenous hidden Markov chains, extending CHMM to multi-channel data fusion fault diagnosis, are utilized for building the reasonable state model of residence time distribution in practical problems. Moreover, the initial state model selection and parameter estimation algorithm of CHMM with two chains are researched on a probability reasoning algorithm. The validation and effectivity of the proposed CHMMis verified by the results of the fault diagnosis on rolling bearing.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-06
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司