基于特征选择与软竞争ART的轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17; TP18

基金项目:

(国家自然科学基金资助项目(51405353,51575417)


Soft-Competitive Learning ART Network for Bearing Fault Diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模糊自适应共振理论(fuzzy adaptive resonance theory,简称Fuzzy ART)已被广泛应用于机械设备实时监控和故障诊断。Fuzzy ART采用只允许一个获胜节点学习的硬竞争学习机制,导致系统极易产生误判。针对此问题,将Yu范数相似度准则、生物侧抑制理论与Fuzzy ART相结合,建立了允许多个获胜节点学习的软竞争ART(简称Soft-ART)算法。为了提高故障诊断精度,运用Yu范数相似度测度改进了基于距离测度的特征参数选择方法。利用轴承故障诊断数据对特征选择算法及Soft-ART算法进行了检验,并与FCM,BP及Fuzzy ART算法进行了对比。结果表明,该Soft-ART算法具有更高的诊断精度,同时说明了特征选择算法的有效性。

    Abstract:

    Adaptive resonance theory (ART) is widely used in real time monitoring and fault diagnosis of mechanical equipment. Traditional ART adopts hard competitive learning mechanism always leads to erroneous when only one winning node is allowed to be learned. In the light of this problem, the Yu’s norm similarity criterion, the lateral inhibition theory and fuzzy ART are combined to establish a soft-competitive learning ART (Soft-ART) mode, which allows multiple winning nodes to be learned. To improve the diagnosis success rate, an improved feature selection technique based on Yu’s similarity criterion is also proposed. Moreover, the feature selection technique and proposed Soft-ART mode are tested by bearing fault data. Compared with FCM, BP and Fuzzy ART, the Soft-ART has a higher diagnostic precision.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-06
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司