基于FSVM的起重机臂筒焊接变形测量研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH212; TG404

基金项目:

国家自然科学基金青年资助项目(61603154);浙江省自然科学基金青年资助项目(LQ17E050010)


Measurement Research on Welding Distortion of Crane Arm Tube Based on Fusion of SVM and Fuzzy Logical Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决获取起重机臂筒固有焊接变形的不便利及复杂性问题,应用支持向量机模糊理论融合技术对起重机臂筒焊接变形测量方法进行研究,并采用遗传算法对支持向量机的核参数及惩罚因子进行寻优,以误差函数为评价指标,最终确定了核参数σ=1.8和惩罚因子c=26。将该测量模型应用于焊接变形的预测,同时采用智能图像检测法对相同预测点进行测量对比,结果显示所建立的融合模型对起重机臂筒焊接变形的测量和智能图像检测法的误差在5%以内,验证了该测量方法的准确性。

    Abstract:

    In order to solve the problems of inconvenient and complexity of the measurement of the crane arm’s welding distortion, the fusion method of support vector machines (SVM) and fuzzy logical theory is adopted to establish the measuring system. In the meanwhile the theory of the genetic algorithm is adopted to optimize the parameters of kernel function and the penalty factor, in the process the error function is defined as the evaluation index, thus parameters of kernel function and the penalty factor are confirmed,σ=1.8 and c=26. The established measuring model is applied to the prediction of welding distortion, meanwhile intelligent image detection method is used to take a measurement of the same prediction point. Contrast results show that the measurement errors between fusion methods proposed in paper and traditional measurement method are under 5%, and accuracy of the measurement method is verified.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-06
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司