基于相关向量EMD和GMDH重构的故障率预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TJ760;TH86

基金项目:

国家自然科学基金资助项目(51605487);山东省自然科学基金资助项目(ZR2016FQ03);中国博士后科学基金资助项目(2016M592965)


Failure Rate Prediction Method Based on Relevance Vector EMD and GMDH Reconstruction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对故障率数据的非线性非平稳特性及现有预测方法精度不足的问题,提出了一种基于相向量经验模态分解(relevance vector empirical mode decomposition,简称RVEMD)和据处理组合法(grouped method of data handling,简称GMDH)重构的预测方法。首先通过RVEMD分离故障率时间序列的波动项和趋势项,分解产生序列的固有模态函(intrinsic mode function,简称IMF)和残余函数(residual function,简称RF),通相关向量机(relevance vector machine,简称RVM)预测端点局部极值的方法抑制传统验模态分解(empirical mode decomposition,简称EMD)存在的端点效应,进一步利用RV回归生成序列的上下包络,替代了常规三次样条插值法;其次,建立各IMF分量的RVM预模型和RF分量的灰色预测模型,其中对标准RVM回归模型进行了改进,通过构建一种方高斯核函数(variance Gauss kernel function,简称VGKF)来提高核函数的全局性能和化能力,利用H-Q准则对训练空间预测嵌入维数进行优化,避免了主观选取的盲目性,时构建了一种基于背景值优化的灰色预测模型;最后,通过GMDH算法产生的最优智能组模型得到最终的预测结果。仿真实例结果表明,相比常规EMD分解后叠加预测法和其他模型预测法,该方法具有更加优异的预测性能,能够对故障率的变化趋势进行准确预测。

    Abstract:

    Aiming at the non-stationarity and nonlinear failure rate data and existing problems of prediction methods, a relevance vector empirical mode decomposition(RVEMD) and group method of data handling(GMDH) is presented. First of all through the fluctuation and trend of failure rate time series decomposition by RVEMD, the intrinsic mode function(IMF) and residual function(RF) can be gotten, and the relevance vector machine(RVM) method is used to predict the endpoint of local extremum suppression of the existence of end effects by traditional empirical mode decomposition(EMD). Furthermore, RVM regression is used to generate the upper and lower envelopes of the sequence, instead of the conventional three spline interpolation method; and then, the forecasting model using RVM and the grey forecasting model using RF are established for each IMF component, which has made the improvement to the standard RVM regression model, through the construction of a variance Gauss kernel function(VGKF) to improve the kernel function of the overall performance and generalization ability of prediction of embedding dimension by H-Q criterion, avoiding the blindness of subjective selection, and a background value of grey prediction model based on the optimization of background value and development is constructed; finally, the optimal combination model of GMDH algorithm is used to get the final prediction results. The proposed method has better prediction performance than the conventional EMD decomposition.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-06
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司