自适应非局部均值及在轴承故障检测中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133.3

基金项目:

国家自然科学基金资助项目(51265010,51665013);江西省青年科学基金资助项目(2016BAB216134);江西省教育厅科技资助项目(GJJ160472)


Adaptive Non-local Means with Applications in Fault Detection of Rolling Bearings
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非局部均值算法(non-local means, 简称NLM)的数据处理效果受其参数设置的影响较大,极大地限制了NLM的数据处理效果及应用范围。针对不足,提出把粒子群算法引入NLM参数的寻优求解。首先,通过粒子群算法迭代寻优的特性寻找NLM算法的最优λ,M和P参数;其次,将最优参数代入NLM算法获得最优滤波器,并对原始信号处理得到滤波信号,以此消除噪声并提取故障信息;最后,对滤波信号进行包络谱分析得到诊断结果,并利用仿真数据和实验轴承内、外圈故障数据对所提方法进行了验证。

    Abstract:

    As known, it is essential to carefully tune the parameters of non-local means (NLM) in order to take it into full play. The adaptively determination of NLM’s parameters for a signal of interest has not been reported so far, which will significantly weaken the NLM in bearing fault diagnosis. Aiming at such a dilemma, a novel fault diagnosis method for rolling element bearings is proposed based on non-local means with particle swarm optimization (PSO). PSO algorithm is used to obtain optimal values of parameter λ, M and P with a superior performance with respect to global optimization and convergence speed. Then an optimalfilter is acquired with the resultant optimal parameters, which can suppress noises and enhance cyclic impact feature hidden in vibrations of faulty bearings after filtering. Finally, fault diagnosis can be achieved by means of the envelop spectrum of the filtered signal. The viability of the proposed method is demonstrated through a series of simulation data and experimental data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-02-18
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司