大传动比微型活齿传动系统非线性共振研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.1

基金项目:

(国家自然科学基金资助项目(51605423,51705217);中国博士后科学基金资助项目(2018M640515);江苏省高等学校自然科学研究资助项目


Nonlinear Resonance of Mini Type Large Transmission Ratio Movable Tooth Drive System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现活齿传动在精密传动领域的应用,设计了一种大传动比微型活齿传动系统。基于行星齿轮传动的线弹性动力学理论建立了活齿传动系统的动力学模型,考虑啮合齿数变化引起的非线性效应,建立了活齿传动系统非线性动力学方程。运用谐波平衡法和正规摄动法推导出系统的非线性幅频关系及非线性共振响应方程。利用给出的任意两组活齿传动系统算例参数,分析了活齿传动系统幅频曲线随系统参数的变化规律,给出了系统在不同倍频下的共振响应。结果表明:阻尼系数ζ和啮合活齿数f对幅频曲线的影响最大,系统在ωe≈ω1和ωe≈1/2ω1时共振显著。因此,为了减小活齿传动系统振动及提高系统平稳性,应尽量减小活齿数量和波发生器偏心距。研究结果为活齿传动系统结构改进和传动效率的提高奠定理论基础。

    Abstract:

    In order to apply the movable tooth drive in precision drive field, a mini type large transmission ratio movable tooth system is designed. Based on an elastic dynamic theory of planetary gear drive, the dynamic model of movable tooth system is established. Considering the nonlinear effect caused by the changing of meshing tooth number, the nonlinear dynamic equations of the movable tooth system are built.The nonlinear amplitude-frequency relationship and resonance equations are deduced with the harmonic balance method and the the perturbation method. Besides, the amplitude-frequency curve changes with parameters and the resonance response laws under different multiplicity frequency are analyzed with the two sets given parameters. Results show that the damping coefficient ζand the amount of meshing movable teeth f have a large impact on an amplitude-frequency curve, and the system resonance is prominent whenωe≈ω1 andωe≈1/2ω1. So, in order to reduce vibration and improve stationarity of the system, a small number of the movable tooth and small offset of wave generator is necessary. The results lay a theoretical foundation for modifying the structure and improving transmission efficiency of the movable tooth system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-02-18
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司