柴油机振动信号快速稀疏分解与二维特征编码
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17; TK428

基金项目:

(国家自然科学基金资助项目(51405498);中国博士后基金资助项目(2015M582642)


Fast Sparse Decomposition and Two-Dimensional Feature Encoding Recognition Method of Diesel Engine Vibration Signal
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对柴油机故障诊断方法中的信号时频表征及特征提取问题,提出一种基于振动信号快速稀疏分解与二维时频特征编码识别的柴油机智能故障诊断方法。首先,为了获得时、频聚集性优良的时频图像,提出一种随分解残差信号自适应更新Gabor字典的改进匹配追踪(adaptive matching pursuit, 简称AMP)算法,利用AMP算法将柴油机振动信号分解后叠加各原子分量的Wigner-Ville分布,获取原信号的稀疏分解时频图像;然后,为提取时频图像的特征参量,提出了双向二维非负矩阵分解(two-directional,2-dimensional non-negative matrix factorization, 简称TD2DNMF)算法,用于对时频图像的幅值矩阵进行特征编码,获取蕴含在时频图像内部的低维特征,并利用最近邻分类器实现了时频图像的自动分类识别。将提出的方法应用于4种不同状态柴油机气门故障的诊断试验中,结果表明,该方法能够获得无交叉项干扰、聚集性好的时频图像,使各时频分量的物理意义更加明确,并改进了传统图像模式识别中的特性参数提取方法,是一种有效的柴油机故障诊断方法。

    Abstract:

    In view of the interference of cross-term in diesel engine vibration signal time-frequency distribution and the difficulty in feature extraction, a new diesel engine intelligent fault diagnosis method based on rapid vibration signal sparse decomposition and two-dimensional time-frequency f0eature encoding recognition are proposed. First, a modified matching pursuit method called adaptive matching pursuit (AMP) whose dictionary can be updated according to the residual signal adaptively in the decomposition is put forward to obtain the vibration time-frequency images with good time-frequency aggregation. Then, the signals are decomposed into a series of atoms based on AMP algorithm and the time-frequency distribution of the original signals are obtained based on the Wigne-Ville distribution of these atoms. The feature coding of the time-frequency image amplitude matrix is captured using a two-directional two-dimensional NMF (TD2DNMF) algorithm, which can acquire the low dimensional characteristics contained within the higher dimensional time-frequency image. Finally, the nearest neighbor classifier is used to realize the automatic classification of time-frequency image recognition. The proposed method is applied to extract the fault features from four different state diesel engine valve faults, and the results verify that this method works well in eliminating the interference of cross terms in diesel engine vibration signal time-frequency distribution, and it improves the traditional image characteristic parameter extraction method of pattern recognition, the quick and effective fault diagnosis of diesel engine valve is realized by this proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-02-18
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司