类学习下基于VSAPSO-BP的掘进机异常检测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TD421.5; TD63; TH165.3

基金项目:

国家重点基础研究发展计划(“九七三”计划)资助项目(2014CB046306);国家自然科学基金资助项目(51874308)


Roadheader Anomaly Detection Method Based on VSAPSO-BP Under the Single Category Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对掘进机回转台异常检测中故障数据缺失以及故障程度划分的问题,提出一种单类学习下基于VSAPSO-BP的掘进机异常检测方法。使用支持向量数据描述(support vector data description,简称SVDD)方法对回转台健康数据进行单类学习,根据现场经验构造非健康样本数据集,以SVDD对非健康样本数据集的识别率为依据,把非健康样本数据分为故障临界数据与故障数据,提出变异自适应粒子群优化(variation self-adapting particle swarm optimization,简称VSAPSO)算法,构建VSAPSO-BP神经网络对健康、故障临界与故障3类数据进行检测,检测准确率为91.7%,与传统PSO-BP方法相比具有更高的准确性与稳定性。实验结果表明,采用单类学习下基于VSAPSO-BP的掘进机异常检测方法可以准确有效地检测掘进机回转台异常,具有较高的应用价值。

    Abstract:

    To solve the problem of missing fault data and dividing fault degree in roadheader rotary table anomaly detection, a novel anomaly detection method based on variation self-adapting particle swarm optimization (VSAPSO) BP neural network under the single category learning is proposed. Using support vector data description (SVDD) to train the healthy data, constructing a non-healthy sample dataset based on the experience in the field, the non-healthy sample data is divided into fault critical data and fault data based on the recognition rate of SVDD for non-healthy sample datasets, and the variation self-adapting particle swarm optimization algorithm is proposed, the VSAPSO-BP neural network is constructed to detect healthy data, fault critical data and fault data, the detection accuracy is 91.7%, compared with the traditional PSO-BP neural network, VSAPSO-BP neural network has a higher accuracy and stability. The results show that the abnormal of roadheader rotary table can be detected accurately and effectively by using anomaly detection method based on VSAPSO-BP neural network under single learning, this method has a high application value.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-02-18
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司