基于HLS-SVDR和SPPCS的CEEMD的滚动轴承微故障特征提取
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113; TH133.3

基金项目:

(国家自然科学基金资助项目(61174106);湖北省自然科学基金资助项目(2016CFB463);湖北省教育厅基金资助项目(B2016006)


Feature Extraction of Rolling Bearing’s Slight Fault of SPPCS CEEMD Based on HLS-SVDR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对互补集总经验模态分解(complementary ensemble empirical mode decomposition, 简称CEEMD)在处理非平稳随机信号时能够有效地消除模态混叠,却仍然存在包络拟合过冲/欠冲和端点效应问题,提出了同伦-最小二乘支持向量双回归(homotopy least squares-support vector double regression, 简称HLS-SVDR)的保形分段三次样条(shape-preserving piecewise cubic spline, 简称SPPCS)的完备CEEMD改进方法。首先,使用SPPCS插值法消除在构造上、下包络曲线过程中产生的拟合过冲/欠冲问题,获得有效的包络线;其次,使用HLS-SVDR对各层信号极值点的包络均值曲线两端进行左、右预测覆盖以抑制端点效应;最后,将该方法用于滚动轴承的微故障特征提取的实例分析中。实验结果表明,该方法能够更有效地提取滚动轴承微故障特征,实现了一种既保持CEEMD原有特性,同时又能够抑制过冲/欠冲和端点效应的完备CEEMD算法。

    Abstract:

    Complementary ensemble empirical mode decomposition (CEEMD) can deal with non-stationary random signals very well, but there are still some shortcomings, such as the fitting overshoot/undershoot and end effects problems. A new method for solving the exiting problem that is shape-preserving piecewise cubic spline (SPPCS) CEEMD based on homotopy least squares-support vector double regression (HLS-SVDR) is proposed in this paper, and to achieve correct and efficient EMD decomposition of signals. Firstly, the SPPCS is used to eliminate the fitting overshoot/undershoot problem in the process of structuring the upper and lower envelope curve, and valid envelope curve can be obtained. Then, the HLS-SVDR is introduced to predict and replace the left and right values at both ends of the mean values of the upper and lower envelopes of extreme points of each layer signals for restraining the end effects. Lastly, the proposed method is applied to analyze the case of the feature extraction of rolling bearing’s slight fault. The experimental results indicate that the proposed method can effectively and accurately extract the rolling bearing’s slight fault feature. A complete CEEMD algorithm can keep the original characteristics of CEEMD, and also effectively restrain the fitting overshoot/undershoot and end effects problems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-02-18
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司