传感器故障后多变量经验小波变换多点预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU311; TH765

基金项目:

(国家自然科学基金资助项目(51778354,51378304)


Multivariable Empirical Wavelet Transform for Multipoint Forecasting After Sensor Fault
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效应对多点风速传感器或风压传感器故障而造成的损失,同时为了降低运算的复杂性和工程应用的难度,需要提出同步恢复缺失数据的模型。传统的多通道信号诊断采用多元经验模态分解(multivariate empirical mode decomposition,简称MEMD),笔者提出多变量经验小波变换(multivariable empirical wavelet transform,简称MEWT)来同步恢复多点缺失数据。具体应用时,首先,运用MEWT将多点信号同时分解为一系列模态;然后,利用核函数极限学习机(kernel-based extreme learning machine,简称KELM)实现同步预测,同时运用杜鹃搜索(cuckoo search,简称CS)算法对模型的正则化参数以及核参数进行智能寻优。多步预测时,采用多输入多输出(multi-input multi-output,简称MIMO)策略代替传统的滚动策略。建筑物表面实测多点风压数据和实测多点下击暴流风速数据用于验证模型的可行性。与噪声辅助的多元经验模态分解核函数极限学习机的对比结果表明,该模型能更高精度地同步恢复多点多步信号。

    Abstract:

    In order to effectively decrease the loss caused by the multipoint fault of wind speed sensors or wind pressure sensors, and to reduce the complexity of computation and the difficulty of the engineering application, a model needs to be proposed to recover the missing data at the same time. As the traditional multi-channel signal diagnosis uses multivariate empirical mode decomposition (MEMD), the multivariable empirical wavelet transform (MEWT) is proposed to restore the multipoint missing data synchronously. In practical application, the multipoint signals are decomposed into a series of modes at the same time, and then the kernel-based extreme learning machine (KELM) is used to predict, and the cuckoo search (CS) algorithm is used to optimize the regularization parameters of the model and the kernel parameters. For multi-step forecasting, the traditional recursive strategy is replaced by the multiple-input multiple-output (MIMO) strategy. The actual measured multipoint wind pressure on the building surface and the measured multipoint data of the downburst are used to verify the feasibility of the model. Compared with the noise assisted multivariate empirical mode decomposition kernel-based extreme learning machine (NA-MEMD-KELM-CS), the result shows that the proposed model can recover signals simultaneously with high accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-02-18
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司