基于样本熵的改进小波包阈值去噪算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911.7; TH165+.3

基金项目:

国家重大科学仪器设备开发专项基金资助项目(2013YQ13042902);西南科技大学博士研究基金资助项目(15zx7122)


Research on Improved Wavelet Packet Threshold Denoising Algorithm Based on Sample Entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了更好地消除噪声对被测振动信号的干扰,分析了样本熵算法与噪声的关系,提出了一种基于样本熵的改进小波包阈值去噪算法。在阈值函数方面,该方法利用样本熵作为特征参数,对含噪信号小波包系数的噪声分布进行表征,且依据此特征参数值对阈值函数进行改进,使其能够根据信号的小波包系数受噪声影响的情况进行自适应的调整;在阈值选取方面,定义去噪后信号与原始信号之差作为噪声信号的估计,利用样本熵作为判别依据,选取使得噪声估计的样本熵值最大的阈值作为最优阈值。该方法与其他方法进行对比,结果表明,该方法能够有效地去除噪声且更好地还原信号的频率特征,是一种更为优越的去噪算法。

    Abstract:

    In the light of eliminating the interference of noise, the limitation of traditional wavelet packet threshold denoising method is analyzed and an improved wavelet packet threshold denoising algorithm based on sample entropy is proposed. At the aspect of threshold function, the method takes sample entropy as a characteristic parameter to represent noise distribution of noisy signal wavelet packet coefficients, and improves the threshold function according to the parameter value, so that it can adjust adaptively based on the noise distribution of signal wavelet packet coefficients. In terms of threshold selection, define the difference between denoised signal and original signal as the estimation of the noise signal, and use sample entropy as the determination criterion to choose the optimal threshold which makes the noise estimation sample entropy maximum. Finally, the method is used to denoise rolling bearing vibration. Comparison with the traditional method shows that the method removed noise effectively and restored signal frequency characteristic better, it′s a greater denoising algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-05-13
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司