IVMD对泵站管道振动响应趋势的预测分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TV93;TB53; TH113

基金项目:

(国家自然科学基金资助项目(51679091);河南省高校科技创新人才计划资助项目(18HASTIT012);广东省水利科技创新基金资助项目(2017-16);华北水利水电大学研究生教育创新计划基金资助项目(YK2017-03)


Prediction and Analysis of the Vibration Response Trend of Pumping Station Pipeline by IVMD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用改进的变分模态分解(improved variational mode decomposition, 简称IVMD)与支持向量机(support vector machine, 简称SVM)相联合的方法,对泵站管道的振动响应趋势进行预测。首先,基于互信息准则确定IVMD的分解模态数,克服变分模态分解(variatronal mode decomposition, 简称VMD)盲目选取分解参数的缺点,利用IVMD将机组和管道的振动序列分解为多个固态模量(intrinsic mode function, 简称IMF),分别作为SVM模型的输入和输出;其次,利用粒子群优化(particle swarm optimization, 简称PSO)分别寻找各模态分量对应SVM模型的最优参数并对各分量分别进行预测;最后,将各测点对应的IMFs预测结果重构作为最终的预测值。结合某大型泵站2号力管道振动响应数据,分别采用IVMD-SVM,PSO-SVM和BP神经网络3种模型对管道振动响应趋势进行预测,并将预测结果进行对比分析。结果表明,IVMD-SVM模型得到的预测结果和实测值更加接近,计算精度更高,且误差较小,该方法对管道及类似工程结构的振动趋势预测具有一定的参考价值。

    Abstract:

    In this paper, improved variational mode decomposition (IVMD) and support vector machine(SVM)are combined to predict the vibration response trend of the pipeline. Firstly, the decomposition mode of IVMD is determined by the mutual information criterion, overcoming the shortcoming of VMD which selects the decomposition parameters blindly. IVMD is used to decompose the vibration series of generating units and pipelines into several intrinsic mode functions which are used as the input and output of the SVM prediction model, respectively. Secondly, the optimal parameters of the SVM model corresponding to each modal component are determined by particle swarm optimization (PSO), and each component is predicted separately. Finally, the prediction results of each modal component are reconstructed to obtain the predicted value of the original series. Taking the No.2 pipeline of a pumping station as the research object, the three models of IVMD-SVM, PSO-SVM and BP neural network are adopted to predict the vibration response trend of pipelines, and the prediction results are compared and analyzed. The results show that the predictive value obtained by IVMD-SVM method is closer to the real value; moreover, the error is smaller and the calculation accuracy is higher. This method has certain utilization value for forecasting the vibration trend of pipelines and similar engineering structures.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-07-08
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司