改进降噪自编码的航空发动机气路故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17;TK14;V263.6

基金项目:

国家自然科学基金资助项目(71401073);国家自然科学基金与中国民航局联合资助项目(U1233115);江苏省研究生培养创新工程资助项目(SJZZ16_0060)


Gas Path Fault Diagnosis for Aero-engine Based on Improved Denoising Autoencoder
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高故障诊断准确度,针对航空发动机气路故障中状态参数非线性强且易受噪声污染的问题,提出一种改进降噪自编码的航空发动机气路诊断方法。该方法在降噪自编码器(denoising autoencoder,简称DAE)基础上,采用改进萤火虫算法(firefly algorithm,简称FA)优化的径向基(radial basis function,简称RBF)神经网络,进行航空发动机故障诊断,DAE能够提取出更利于故障诊断的深层鲁棒特征。为了进一步提高算法的诊断准确度,引入惯性权重与自适应光强因子的改进FA来优化RBF网络从而得到萤火虫径向基(firefly radial basis function,简称FRBF)网络,再将DAE提取的特征导入其中进行故障诊断。通过实例,将提出方法与原始DAE、单独的FRBF、支持向量机(support vector machine,简称SVM)和RBF这 4种算法进行对比,结果表明,所提出方法诊断精度最高,达到98.1%,且算法性能稳定,鲁棒性也优于其他几种方法。

    Abstract:

    Considering the state parameters significant nonlinearity and the vulnerability to noise pollution in the aero-engine gas path faults,a method based on denoising autoencoder (DAE) and integrated with a neural networks of firefly algorithm (FA) and radial basis function (RBF) is proposed to diagnose the gas path faults and improve the diagnostic accuracy. The DAE is adopted through greedy algorithms to identify deeper robust features that helps diagnose the faults. To further improve the diagnostic accuracy of the algorithm, inertia weight and improved FA of selfadaptive light intensity factor are introduced to obtain the firefly radial basis function (FRBF) network after optimizing the RBF network. Then the robust features extracted from the DAE are imported into the FRBF for faults diagnosis. Based on practices, the extracting method is compared with the algorithms which are original DAE, independent FRBF, SVM and RBF. According to the results, the proposed method presents highest diagnostic accuracy of 98.1%, stable performance in the algorithms and more satisfying robustness.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-07-08
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司