基于DCCA-NSEn的系统耦合网络建模与评估
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家质量监督检验检疫总局“质量基础设施效能研究重点实验室开放研究课题”基金资助项目(KF20180301)


DCCA-NSEn-Based Coupling Network Modeling and Evaluation Method for Complex Electromechanical Systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对流程工业生产系统监测点多,各监测点间具有相关性的特点,提出了一种基于去趋势交叉分析-网络结构熵(detrended cross-correlation analysis-net structure entropy,简称DCCA-NSEn)的复杂机电系统多变量耦合网络建模与状态评估的方法。该方法利用DCCA算法计算多变量两两之间的相关性,构建反映多变量耦合关系的加权网络模型,对监测序列进行滑移求解,得到系统耦合关系网络动态演化模型。利用NSEn方法分析耦合关系网络的结构熵,根据熵随时间的变化趋势对复杂机电系统的服役演化状态进行评估。笔者选取某压缩机组的真实生产数据进行DCCA-NSEn方法验证,然后用耦合去趋势波动分析(coupling detrended fluctuation analysis,简称CDFA)方法对同一组生产数据进行多变量分析,对两方法的分析结果进行对比。结果表明:与DCCA方法相比,本方法具有多变量同时监测评估的优势;与同样是多变量分析的CDFA方法相比,本方法具有评估效果稳定,对系统的异常状态检测效果更明显的优势。

    Abstract:

    Considering that there are many monitoring points in process industrial production system and aiming at the correlation among monitoring points, a method is proposed to comprehensively evaluate the state of multiple variables in the system, based on detrended cross correlation analysis (DCCA) method and network structure entropy method (DCCA-NSEn). We use the DCCA method to calculate the correlation between the multivariate variables, and construct a weighted network model which reflects the multivariable coupling relationship. Time window sliding in the monitoring sequence to obtain the dynamic evolution model of system′s coupling relationship network. The NSEn method is used to calculate the network structure entropy of the coupled network model in each time period. Finally the state of the complex electromechanical system is evaluated according to the network structure′s entropy changes over time. This paper presents the real production data of a compressor unit to verify the DCCA-NSEn method, then the multivariate analysis of the same group of production data is conducted by the coupling detrended fluctuation analysis (CDFA) method. The results of the two methods are compared. The results show that compared with the DCCA method, this method has the advantages of multivariate simultaneous monitoring and evaluation. Compared with the CDFA method, which is also a multivariate analysis method, the DCCA-NSEn method has the advantages of stable evaluation effect and obvious effect on the abnormal state detection of the system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-11-04
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司