基于半监督最大间隔字典学习的故障诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3;TP391.4;TP181

基金项目:

(国家自然科学基金资助项目(50875056,11472076);中国石油科技创新基金资助项目(2016D-5007-0606);东北石油大学“国家基金”培育基金资助项目(2017PYYL-4)


A Novel Fault Diagnosis Method Based on Semi-supervised Max-margin Dictionary Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对有标记故障样本不足及传统半监督诊断方法识别率低的问题,提出基于半监督最大间隔字典学习算法(semi-supervised max-margin dictionary learning,简称SSMMDL)的故障诊断方法。该方法将无标记样本重构误差项添加至最大间隔字典学习算法模型中,通过最小化无标记样本稀疏重构误差项、有标记样本稀疏重构误差项、支持向量机的损失函数正则项和分类间隔正则项,实现字典和支持向量机的同步学习,从而获得判别能力较强的字典。在此基础上,运用稀疏编码获得测试样本的稀疏表示,利用基于稀疏表示的分类器进行故障识别。通过对转子不同故障进行识别,结果表明所提方法较相关对比算法识别准确率更高,可以满足机械故障在线监测的需要。

    Abstract:

    In the light of marked fault samples and low recognition rate of the traditional semi-supervised diagnosis method,a novel fault diagnosis method, which is based on semi-supervised max-margin dictionary learning (SSMMDL), is put forward. In the proposed method, an unmarked sample reconstruction error term is added to the max-margin dictionary learning model. By minimizing the four terms, including unmarked samples sparse reconstruction error term, marked samples sparse reconstruction error term, the regular items of the loss function in support vector machine (SVM) and the regular items of classification interval regularization, the synchronous learning of the dictionary and the SVM is realized. and the dictionary with the discriminant ability is built. On this basis, the sparse representation of test samples is obtained. At last, we identify the faults by the classifier based on sparse representation. The different faults of rotor are recognized. The experimental results show that the proposed method is more accurate than the comparative algorithms in terms of accuracy rate, and succeeds in meeting the needs of online monitoring of mechanical fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-11-04
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司