基于多种信号分解的台风风速多步预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU311; TH765

基金项目:

国家自然科学基金资助项目(51778354,51378304)


Multiple Signal Decomposition Method for Multi-step Forecasting of Typhoon Wind Speed
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对台风风速多步预测中用到的信号分解方法开展对比研究。首先,列举8种典型信号分解方法的特点;其次,基于不同信号分解方法建立经粒子群算法(particle swarm optimization, 简称PSO)优化的最小二乘支持向量机(least squares support vector machine, 简称LSSVM)预测模型;最后,采用某大跨桥梁主塔位置和沿海某高层建筑楼顶处的两组台风实测风速序列进行多步提前预测研究。对两组试验的预测结果进行分析,发现基于变分模态分解(variational mode decomposition, 简称VMD)的PSO-LSSVM模型具有最佳预测效果。

    Abstract:

    Long-span bridges and high-rise buildings are widely distributed in southeastern coastal areas of China. However, this area is also affected by typhoons every year. Accurate prediction of typhoon wind speed is a very important means of increasing disaster prevention capabilities of engineering structures and auxiliary decision-making. In this paper, a comparative study in different signal decomposition methods used in multi-step forecasting of wind speed is carried out. First, the characteristics of eight typical signal decomposition methods are enumerated. Then, the least squares support vector machine (LSSVM) prediction model based on particle swarm optimization (PSO) optimization is established based on different signal decomposition methods. Finally, the multi-step ahead forecasting experiment is carried out using two measured wind speed, which are collected from the main tower of a long-span bridge and the roof of a high-rise building. The prediction results of the two groups of experiments show that the VMD-LSSVM-PSO model has the best prediction performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-11-04
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司