基于MGA-BP网络的航空轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17; V231.1

基金项目:

中央高校基本科研业务费项目及中国民航大学专项资助项目(3122019174)


Aero-engine Bearing Fault Diagnosis Based on MGA-BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高航空发动机轴承故障诊断的准确率,提出基于改进遗传算法优化(back propagation,简称BP)网络(modified genetic algorithm to optimize BP,简称MGA-BP)的故障诊断模型。针对传统遗传算法易早熟、易陷于局部最优解等缺陷,利用固定个体选择概率、引入三角函数和高斯变异操作对遗传算法进行改进,并用改进遗传算法优化BP网络的权值和阈值。利用优化的BP网络对滚动轴承正常、内圈故障、外圈故障和钢球故障4种工况进行诊断,并考虑到网络输出模式、诊断样本比例等对诊断精度的影响。为了验证MGA-BP在轴承故障诊断中的有效性,将其他改进遗传算法优化BP网络作为对比算法。分析表明:MGA-BP能够较好地适应网络不同的输出模式、不同的样本比例,其抗噪能力、诊断准确率、误差收敛速度和误差收敛值均优于文中其他对比算法。

    Abstract:

    The back propagation(BP)neural network optimized by modified genetic algorithm(MGA-BP) is proposed to improve accuracy of aero-engine bearing fault diagnosis. The traditional genetic algorithm optimized by using the fixed individual selection probability, trigonometric function and Gauss mutation operation to solve defect problem of genetic algorithm. The BP neural network weight and threshold is optimized by MGA-BP. Four cases of rolling bearing normal, inner ring fault, out ring fault and ball fault are diagnosed by using the optimized BP neural network. The influence of network output mode and diagnostic sample proportion on the accuracy of diagnosis is fully considered. In order to verify the effectiveness of MGA-BP in the bearing fault diagnosis, the BP neural network is optimized by other improve genetic algorithm as a contrast algorithm. The comprehensive comparison results show that MGA-BP can better adapt to different output modes and different sample proportions than other algorithms in this paper. And its noise immunity, diagnosis accuracy, convergence speed and error convergence value are all better than other improved genetic algorithm. In consequence, MGA-BP is more suitable for bearing fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-05-07
  • 出版日期: 2020-04-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司